

UVG Operating Principles

When the diode is exposed to photons of energy greater than 1.12eV (wavelength less than 1100nm), electron-hole pairs (carriers) are created. These photogenerated carriers are separated by the p-n junction electric field and a current proportional to the number of electron-hole pairs created flows through an external circuit. Ultraviolet photons, with wavelength shorter than about 350nm, create more than one electron-hole pair [1]. This results in internal quantum efficiencies greater than unity as shown in Fig. 1.

Figure 1: Internal Quantum Efficiency of UVG-Series photodiodes

Two unique properties of the UVG photodiodes have resulted in previously unattained stable and 100% collection efficiencies and near theoretical quantum efficiencies.

The first property is the absence of a surface dead region i.e. no photogenerated carrier recombination occurs in the doped n-type region and at the silicon-silicon dioxide interface. As the absorption depths for the majority of UV photons are less than 1µm in silicon, the absence of a dead region yields complete collection of photogenerated carriers by an external circuit resulting into 100% collection efficiency. The flat region from 310nm to 640nm in Figure 1 shows that these diodes have 100% collection efficiency.

Reference:

R. Korde and J. Geist Quantum Efficiency Stability of Silicon Photodiodes Applied Optics, Vol. 26, 5284-5290 (1987).

The second unique property of the UVG diodes is their radiation hard, junction passivating, oxynitride protective entrance window which is discussed next.

UVG Series Radiation Hardness

The second unique property of the UVG diodes is their radiation hard, junction passivating, oxynitride protective entrance window.

This super-hard window makes them extremely stable after exposure to intense flux of UV photons. UVG-Series photodiodes show less than 2% responsivity degradation after megajoules/cm² of 254nm and tens of kilojoules/cm² of 193nm photon exposure.

Because of the oxynitride window, UVG photodiodes did not show any change in UV-visible quantum efficiency after their exposure to 100% relative humidity for several weeks. This unique feature enables their use without the commonly used fused silica protective window. This open face configuration is extremely advantageous in applications where the fused silica window interference effects are problematic.

Owing to these outstanding properties, national laboratories such as NIST and PTB (Germany) are evaluating UVG photodiodes for use as transfer standards. As n-on-p diodes are more radiation-hard than the more common p-on-n devices [1], UVG diodes are better suited for space missions than conventional silicon photodiodes. UVG photodiodes with 4mm and 5mm diameter active area were used in the Multi-Angle Imaging SpectroRadiometer (MISR) launched in December 1999 as part of NASA's Earth observing system [2]. These devices were also be used aboard an Argentinean satellite.

Figure 2: Structure of UVG-Series photodiodes

REFERENCES:

[1] R. Korde et. al. The effect of Neutron Irradiation on Silicon Photodiodes IEEE Trans. on Nuclear Sciences, Vol. 36, 2169-2175 (1989).

[2] C. Jorquera et. al.

Design of New Photodiode Standards for use in the MISR In-Flight Calibrator Proc. of IGARSS' 94, IEEE Catalog Number 94CH3378-7, 1998-2000 (1994).

UVG Series Internal Quantum Efficiency

1 cm² active area UVG-100 diodes have been used to determine quantum yield (number of electron-hole pairs generated per absorbed photon) of silicon in the 254nm to 160nm spectral region [1]. Quantum yield in this region has been determined for the first time and can be seen in Fig. 1 from 320nm to 150nm.

This quantum yield knowledge now makes possible development of trap detectors for absolute flux determination in applications like deep UV lithography, and photorefractive and phototherapeutic keratectomy.

Owing to their 100% collection efficiency, the external quantum efficiency of UVG-series photodiodes can be calculated in the UV and short wavelength visible (about 160nm to 600nm) as the product of the internal quantum efficiency times one minus the reflectance of the photodiode. The internal quantum efficiency can be taken from Fig. 1 and the reflectance can be measured or calculated. Figure 3 shows the measured reflectance from 150nm to 1100nm for the UVG series photodiodes with 70nm oxynitride front window.

Figure 3: Typical Reflectance of UVG-Series photodiodes

REFERENCES: [1] L.R. Canfield et. al. Absolute Silicon Photodiodes for 160nm to 254nm Photons Metrologia, Vol. 35, 329-334 (1998)

UVG-20 Linearity

Fig. 4 shows the linearity of the UVG-20 photodiode and a widely used P-on-N photodiode of equivalent area when exposed to increasing levels of 430nm radiation. The standard ac-dc method was used to measure linearity. The P-on-N photodiode showed a noticeable decrease in responsivity at photocurrents greater than 500µA while the UVG-20 photodiode showed only 0.02% decrease in responsivity at a photocurrent of 3mA. Application of a reverse bias will extend the linear range of the UVG photodiodes when measuring UV radiation.

Figure 4: Linearity of UVG-20 photodiode and a widely used P-on-N photodiode when tested at 430 nm with no reverse bias

It is believed that the difference in the series resistance of these diodes can explain the large difference in linear range.

Fig. 5 shows the linearity of a UVG-20 diode and a P-on-N photodiode with an internal quantum efficiency of 80% at 430nm. This 80% IQE is a result of photogenerated carrier recombination in the front region.

The supralinearity (increased responsivity) in the low IQE device is caused by the filling of trap centres with increasing flux [1]. As the trap centres are filled the minority carrier lifetime increases reducing the photogenerated carrier recombination resulting in increased responsivity.

The UVG series photodiodes have 100% internal quantum efficiency (no photogenerated carrier recombination) at 430nm so they show no supralinearity. Because it is difficult to correct for non-linearity errors, high accuracy applications require linear photodiodes like the UVG series diodes.

Figure 5: Linearity of P-on-N photodiode with 80% internal quantum efficiency and UVG-20 photodiode with 100% internal quantum efficiency.

Fig. 6 compares the linearity of the UVG-20 photodiode and a widely used P-on-N photodiode with equivalent area when exposed to increasing levels of 980nm radiation. The P-on-N photodiode showed noticeable supralinear behaviour for photocurrents above 20µA while no noticeable supralinearity was observed in the UVG-20 diode. At high irradiance levels, the P-on-N photodiode was found to lose responsivity much more rapidly than the UVG series diode. As the UVG series diode internal quantum efficiency drops rapidly after 700nm owing to the limited silicon thickness, ODC also provides P-on-N photodiodes (for example: UVG-PN100, UVG-PN20, etc.) which have shown over 97% internal quantum efficiency a 0nm.

Figure 5: Linearity of UVG-20 photodiode and widely used P-on-N photodiode when tested at 980 nm with no reverse bias

Interestingly, the linearity of the ODC P-on-N diodes (ODC model # UVG-PN20) was exactly the same as that of the standard UVG-20 diode depicted in Fig 6.

Also, the internal quantum efficiencies of the ODC P-on-N and the widely used P-on-N photodiodes are nearly equivalent at 980nm indicating they will have the same minority carrier lifetime. This suggests that the minority carrier lifetime (diffusion length) is not the only factor which determines the supralinearity as was previously believed [1].

The substrate doping concentration of the UVG-PN20 diode is 2x10¹³/cm³ and that of the widely used Pon-N diode is 5x10¹²/cm³. Computer modelling has shown that this difference in the starting materials can qualitatively explain why these photodiodes exhibit such different levels of supralinearity.

Fig. 7 shows the structure of the UVG-PN20 photodiode that was investigated.

Figure 7: Structure of UVG-PN20 photodiode

REFERENCES:

[1] A.R. Schaefer, E.F. Zalewski, and Jon Geist Silicon detector nonlinearity and related effects" Applied Optics, Vol. 22, 1232-1235 (1983)

UVG Uniformity / Spectral Response

Response uniformity of a 10mm x 10mm active area ODC photodiode used by NIST as a transfer standard in the 5nm to 254nm spectral region is shown in Fig. 8.

The response uniformity was within $\pm 0.5\%$ when scanned with a 254nm photon beam of 1mm dia.

For comparison, Fig. 9 shows the uniformity of the UV enhanced diode which NIST currently uses as a transfer standard in the 200nm to 400nm spectral range [1]. As seen in Fig. 9, the response uniformity of this device was within $\pm 2\%$.

The excellent spatial response uniformity of ODC photodiodes will provide better reproducibility than other commercially manufactured photodiodes and therefore exhibit a lower overall measurement uncertainty.

REFERENCES:

[1] Ping-Shine Shaw et. al. The new ultraviolet spectral responsivity scale based on cryogenic radiometry at Synchrotron Ultraviolet **Radiation Facility III** Rev. of Sci. Instruments, Vol. 72, 2242-2247 (2001)

UVG Responsivity Stability

It has been known for a number of years that silicon photodiodes show degradation in responsivity or linearity when exposed to intense UV flux [1,2].

The major UV induced instability arises because of inferior quality of the silicon-silicon dioxide (Si-SiO2) interface [1]. Passivating layers other than silicon dioxide have been investigated recently to improve the interface quality of silicon devices. Among the many alternative passivating coatings reported, silicon Oxynitrides (Nitrided oxides) look promising. Oxynitrides have been shown to have higher resistance to ionising radiation and impurity diffusion compared to pure oxides [3]. It has been postulated that the energy required to break a Si-N bond is much greater than that required to break Si-H or Si-OH bonds. Thus, less interface states are created in a Nitrided device after exposure to UV radiation.

The above point was verified by us recently when diodes with 1 G-rad (SiO2) hardness [4] were fabricated by incorporating nitrogen in the passivating oxide. It may be noticed here that this hardness is about 10,000 times the hardness of commonly used p-on-n photodiodes, and is the highest hardness ever reported or is known to exist in any silicon device.

Two other causes may be pointed out for quantum efficiency instability of silicon photodiodes. The first cause is formation of latent recombination centres by metallic impurities like silver [5]. These recombination centres become active over a period of several years causing a long term loss in QE.

The other cause for quantum efficiency degradation is moisture penetration into the device over a long period of time. Moisture is suspected of causing recombination centres near the oxide-silicon interface leading to the quantum efficiency loss [6].

To minimise the effects of the above quantum efficiency instability mechanisms, UVG photodiodes were fabricated in an extremely clean environment to have negligible latent recombination centres and a trapfree, moisture insensitive Si-SiO2 interface. Nitrogen incorporation in the Si-SiO2 interface is known to make it insensitive to impurity penetration. Fig. 10 shows a quantum efficiency plot of our UV-enhanced diodes before and after exposure to 100% relative humidity. These diodes were fabricated by nitrogen incorporation at the interface and hence have exhibited no change in the 50 to 250nm quantum efficiency even after 4 weeks of 100% relative humidity exposure at room temperature [4].

Figures 11 and 12 show the responsivity stability of the UVG series diodes after exposure to intense radiation at 254nm and 193nm respectively.

The 254nm exposure was performed by a 20 mW/cm2 low pressure mercury lamp.

A Lambda Physik ArF excimer laser with 100Hz pulse repetition rate and an energy density of 200mJ/cm² (3.9W at 100Hz) was used to carry out the 193nm stability test.

NOTE: Tests were conducted by International Radiator Detectors (IRD) prior to acquisition by Opto Diode Corporation

Figure 11: Stability of a UVG series diode compared to other types of diodes after exposure to 254nm radiation

Figure 12: Stability of a UVG series diode compared to p-on-n diode when exposed to 193 nm radiation

Fig. 13 shows the response of three types of silicon photodiodes used to test the stability of Nichia 378nm LED. Current through the photodiodes was about 61nA.

It is interesting to note that the p-on-n and the inversion layer diodes indicate that the long term stability of these early generation Nichia UV LEDs was guestionable!

Figure 13: Nichia 378 nm LED stability measured with p-on-n, inversion layer, and the UVG-100 photodiodes [7].

REFERENCES:

www.aptechnologies.co.u

[1] R. Korde and J. Geist Quantum Efficiency Stability of Silicon Photodiodes Applied Optics, Vol. 26, 5284-5290 (1987) [2] K. D. Stock Regeneration of the Internal Quantum Efficiency of Silicon Photodiodes Inst. Phys. Conf. Ser. No. 92, 167-171 (1988) [3] For example, see : Ultra-thin Dielectrics for Semiconductor Applications - Growth and Characteristics H. R. Harrison and S. Dimitrijev Microelectronics Journal, Vol. 22, 3-38 (1991) [4] R. Korde, J. Cable and R. Canfield 100% Internal Quantum Efficiency Silicon Photodiodes with One G-rad Passivating Silicon Dioxide IEEE Trans. on Nuclear Sciences, Vol. 40, no. 6, 1655-1659 (1993) [5] V.G. Weizer et al. Photon Degradation Effects in Terrestrial Silicon Solar Cells, J. Appl. Phys. Vol. 50, 4443 (1979). [6] L. Manchandra Hot Electron Trapping Generic Reliability of p+ Polysilicon/SiO2 /Silicon Structures for Fine Line CMOS Technology 24th Annual Proceedings, Twenty-Fourth Annual Conference on Reliability Physics IEEE, 183-186 (1986). Courtesy of Donald F. Heath, Research Support Instruments, Boulder Co. [7] hnologies AP Technologies Limited The Coach House Watery Lane Bath BA2 1RL

T: +44 (0) 1225 780400 F: +44 (0) 8701 266449 E: info@aptechnologies.co.uk

UVG Performance Characteristics

As UVG diodes are windowless devices, they are supplied with protective epoxy on their wire bonds. Hence, these devices need to be operated near room temperature, i.e., one cannot heat these devices for outgassing purpose nor cool them to reduce the noise.

This is necessary to avoid generation of stress on the wires because of difference in the Thermal Coefficient of Expansion (TCE) between the wire and the epoxy.

If necessary, UVG series diodes can be provided without epoxy on the wire bonds or with a UV transmitting window like fused silica or magnesium fluoride.

A less than 1% change in the 254nm responsivity was observed when UVG photodiodes were subjected to the following accelerated testing.

- 1. Exposure to 100% relative humidity at room temperature for a week
- 2. Exposure to 20 mW/cm2 254 nm radiation for two weeks
- 3. Baking at 100° C for four weeks.

Thus, it is clear that UVG-series diodes possess excellent long term stability as well as radiation hardness.

Response uniformity of UVG diodes over 10mm x 10mm active area was within +/- 0.5% when scanned with a 254nm photon beam of 1mm diameter and is shown in Figure 1.

Figure 14: Uniformity of UVG-100 at 254nm

Fig. 15 shows the temperature dependence of the diode responsivity at 254nm. Typically the responsivity was found to increase by 0.045% per degree Celsius. Note that this responsivity dependence on temperature is less than that reported by other manufacturers of UV-enhanced photodiodes. As the diode does have 100% internal collection efficiency, we believe that the temperature dependence of the responsivity is caused by an increase in the quantum yield with higher temperatures and also partly by the change in surface reflectance

Figure 15: Change in 254nm responsivity of UVG-Series photodiodes with temperature

Fig. 16 shows temperature dependence of the shunt resistance. The shunt resistance was found to decrease by a factor of 2 for every 7.5°C rise in temperature.

Figure 16: Change in 254nm responsivity of UVG-Series photodiodes with temperature

Plechnologies. www.aptechnologies.co.uk

AP Technologies Limited The Coach House Watery Lane Bath BA2 1RL T: +44 (0) 1225 780400 F: +44 (0) 8701 266449 E: info@aptechnologies.co.uk