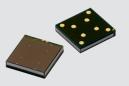
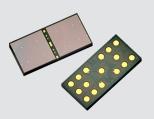
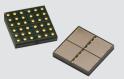
Single SiPM


2×2 mm² AFBR-S4N22P014M

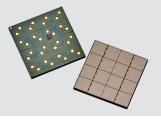
4×4 mm² AFBR-S4N44P014M



6×6 mm² AFBR-S4N66P014M



SiPM Arrays


2x1 Channels (6×6 mm²) AFBR-S4N66P024M

2x2 Channels (4×4 mm²) AFBR-S4N44P044M

4x4 Channels (4×4 mm²) AFBR-S4N44P164M

AFBR-S4N Series

Broadcom High-Sensitivity NUV Silicon Photomultipliers

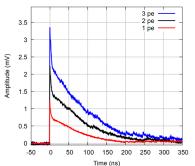
Broadcom® silicon photomultipliers (SiPMs) are ultra-sensitive optical sensors for the detection of near-ultraviolet to visible photons. Detectable light levels range from single photons up to 6.8×10^5 photons/ μ s. The compact design and various form factors of Broadcom SiPMs also make them the ideal sensor for many channel applications where high numbers of readout channels must fit in a limited design area.

Boost Your System Performance

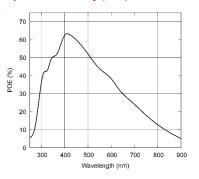
The recently released NUV-MT SiPM series brings performance to unprecedented levels and allows customers to achieve best-inclass performance in their applications; for example:

- Flow cytometry/Fluorescence detection
- Radiation spectroscopy
- X-ray detection, X-ray photon counting
- Radon detection
- TOF-PET
- Line-of-sight data communication

Broadcom SiPM Leading-Edge Technology


The Broadcom NUV-MT brings sensitivity, low-light detection, and fast timing applications to unreached levels by combining:

- Best-in-class photo-detection efficiency (PDE)
- · Excellent gain and breakdown uniformity
- Low noise characteristics


At the same time, high linearity and dynamic range is achieved by:

- 40-μm SPAD pitch
- 55-ns recharge time constant

Waveforms (Over 25 Ohm)

Spectral Sensitivity (PDE) at 12V OV

Comparison of Low-Light Sensors	PMT Photomultiplier Tube	APD Avalanche Photodiode	SiPM Silicon Photomultiplier
Quantum Efficiency	25% 40%	60% 80%	80% (PDE: 65%)
Single Photon Detectability	✓	_	✓
Single Photon Time Resolution	✓	_	✓
Excess Noise Factor	Good	Poor	Good
Operation Voltage	1 kV 3 kV	100V 500V	20V 60V
Gain	10 ⁴ 10 ⁹	30 300	10 ⁵ 10 ⁷
Robustness	_	✓	✓
Insensitivity to Magnetic Fields	_	✓	✓
No Damage in Bright Light	_	✓	✓
Miniaturization	_	✓	✓
Low Pitch Tileability	Poor	Good	Good

For further details and contact Information, visit our webpage (https://www.broadcom.com/ products/optical-sensors/silicon-photomultiplier-sipm) or contact us directly at sipm@broadcom..

Copyright © 2023 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies. AFBR-S4NXX-SIPM-PB100 June 15, 2023

